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1. Implementation Details

1.1. Class­agnostic 3D Segmenter

We adopt the architecture from ISBNet [20] to serve as our

class-agnostic 3D proposal network due to its publicly re-

leased implementation. This network processes N points in

a colored point cloud P ∈ R
N×6 and outputs a collection of

K binary 3D instance mask M ∈ {0, 1}K×N . At its core is

a 3D UNet backbone a 3D UNet backbone [7], utilizing 3D

sparse convolutions [6], which processes the input to pro-

duce a feature map F3D of the point cloud. Subsequently,

an instance-wise encoder, based on a sampling strategy, re-

fines these features to produce instance-specific kernels and

bounding box parameters. The final stage involves a box-

aware dynamic convolution, which employs these instance

kernels and mask features, augmented by the correspond-

ing box predictions, to compute the binary mask for each

instance.

During inference, we utilize the Intersection over Union

(IoU) prediction score to filter out lower-quality masks,

with a threshold of 0.2. This score is neutral regarding

object classes—during training, the IoU prediction head is

trained on the IoU values calculated between the predicted

masks and their ground truth counterparts, which are de-

termined by the Bipartite Matching algorithm. Next, we

employ superpoints [15, 23] to refine the alignment of our

proposals with the actual point cloud structure. This step

ensures that our segmentation is consistent with the spa-

tial organization of the point cloud. Lastly, we discard any

small proposals that have fewer than 50 points.

1.2. Open­Vocabulary 2D Segmenter

In this study, we employ four 2D open-vocabulary instance

segmenters: Grounded-SAM1, DETIC [35], SEEM [36],

and ODISE [30]. Here is a breakdown of how each of these

segmenters is utilized:

(a) For Grounded-SAM, we utilize the Swin-B Grounding

DINO decoder [17], which has been pretrained on various

datasets including COCO [18], O365 [28], GoldG [13, 22],

OpenImage [14], ODinW-35 [16], and RefCOCO [11].

1https : / / github . com / IDEA - Research / Grounded -

Segment-Anything

This model is employed to generate bounding boxes from

a given text prompt, with box and text thresholds both set

to 0.4. Subsequently, these generated bounding boxes are

passed through the ViT-L Segment Anything Model [12] to

produce instance masks. To process every text query cap-

tion, we divide it into chunks, each containing 10 classes,

accommodating the limitations of the 77-token decoder. Fi-

nally, we apply Non-Maximum-Suppression with an IoU

threshold of 0.5 to obtain the ultimate bounding boxes.

(b) For DETIC, we follow [19] to use the Swin-B model pre-

trained on the ImageNet-21K dataset [3] with 21K classes

as text queries. We set the confidence threshold at 0.5.

(c) For SEEM, we employ the Focal-T visual decoder,

which is trained on RefCOCO and LVIS [9], with a logit

score threshold of 0.4. Similar to Grounded-SAM, SEEM

follows a query processing and post-processing procedure.

(d) For ODISE, we utilize the pre-trained label COCO ver-

sion. This model is complemented by the Stable Diffusion

[25] pre-trained on a subset of the LAION [27] dataset,

along with Mask2Former [2] serving as the mask genera-

tor. We set the confidence threshold to 0.5.

1.3. S3DIS and Replica Datasets

(a) For the S3DIS dataset, which lacks original mesh data,

we apply the superpoint-graph method from the Superpoint

Transformer [24] to generate superpoints straight from the

3D point cloud data. For scenes having an extra large num-

ber of points (e.g. 1M points), we subsample the point cloud

by a factor of 4 for efficient processing.

(b) For the Replica dataset, we adopt the mesh segmenta-

tion tool2 based on Felzenszwalb and Huttenlocher’s effi-

cient graph-based image segmentation method [5] to create

superpoints. The ground-truths for semantic and instance

segmentation are provided by [29].

1.4. 3D Object Proposal Formation Process

The implementation details of the 3D Object Proposal For-

mation Process using the Hierarchical merging order and

Agglomerative merging strategy are shown in Alg. 1. Hav-

ing the 3D point cloud regions obtained from the merging

2https : / / github . com / ScanNet / ScanNet / tree /

master/Segmentator
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procedure across individual frames {r1, r2, . . . , rT }, the

algorithm merges these independently fragmented regions

(see Fig. 1) into well-formed ones recursively, resulting in

high-quality augmented 3D proposals.

1.5. Point cloud ­ Image Projection

To establish the correspondence between a 3D point cloud

and each frame of the RGB-D sequence V, we employ the

principles of pinhole camera projection. Given a 3D point

cloud P = {pi}
N
i=1 ∈ R

N×6, and for a specific frame t,
we consider its depth image Dt ∈ R

H×W , intrinsic matrix

Kt ∈ R
3×3 and extrinsic matrix [R|c]t ∈ R

3×4, where

R is a 3D rotation matrix and c is a 3D translation vector.

The composite matrix of rotation and translation converts

coordinate from the global frame (of the point cloud) to the

camera’s frame at time t. We compute the projection matrix

that maps 3D points to 2D image coordinates as follows:

Πt = Kt · [R|c]t (1)

Then the 2D projection of a 3D point pi =

[x
(3d)
i , y

(3d)
i , z

(3d)
i ] ∈ P is given by:
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where z
(2d)
i is the projected depth value and x

(2d)
i , y

(2d)
i is

the 2D pixel coordinate. Next, we discard any points whose

projections fall outside the image boundaries, defined by

x
(2d)
i /∈ [0,W − 1] or y

(2d)
i /∈ [0, H − 1]. To address occlu-

sion within that viewpoint, we further filter out points where

the difference between their projected depth and the actual

depth recorded at the corresponding pixel in the depth im-

age exceeds a certain depth threshold τdepth:

|z
(2d)
i −Dt[⌊y

(2d)
i ⌋, ⌊x

(2d)
i ⌋]| > τdepth (3)

2. Additional Analysis

Ablation study on the depth threshold τdepth is reported

in Tab. 1. Overall, τdepth = 0.1 gives the best performance.

Ablation study on the subsampling factors of RGB-D

images is shown in Tab. 2. By default, we subsample the

number of images by a factor of 10. Increasing the subsam-

pling factor to 20 or 40 slightly decreases the performance

to 17.1 in AP scores. Reducing the number of images too

much yields worse results. We also report the total runtime

Algorithm 1 3D Object Proposal Formation

Input: T per-frame merged point cloud regions {rt}
T
t=1.

Output: Augmented 3D proposal set r.

1: function HIERARCHICAL TRAVERSE(s: start, e: end)

2: if s = e then

3: return rs ▷ Look up in {rt}
T
t=1

4: else

5: m← ⌊(s+ e)/2⌋
6: rleft ← HIERARCHICAL TRAVERSE(s,m)
7: rright ← HIERARCHICAL TRAVERSE(m+1, e)
8: r← (rleft ∪ rright)
9: Cr ← COST MATRIX(r) ▷ following Eq. (1)

in the main paper

10: r← AGGLOMERATIVE CLUSTERING(r,Cr)
11: return r

12: end if

13: end function

14: r← HIERARCHICAL TRAVERSE(1, T )

τdepth AP APhead APcom APtail

0.2 17.4 17.7 15.6 19.3

0.1 18.2 18.9 16.5 19.2

0.05 18.7 17.7 16.4 22.8

0.025 17.7 17.6 17.6 18.6

0.01 16.7 16.3 13.8 21.2

Table 1. Ablation on the depth threshold τdepth.

Use 3D Sub. factor AP APhead APcom APtail Time (h)

✓ 10 (default) 23.7 27.8 21.2 21.8 20 + 2.3

10 (default) 18.2 18.9 16.5 19.2 20 + 2

20 17.9 17.9 16.5 19.6 10 + 1

40 17.4 17.3 16.7 18.5 5 + 0.5

80 16.5 16.7 15.4 17.1

160 13.2 12.4 12.4 15.2

320 9.0 8.6 8.0 10.7

Table 2. Study on the subsampling factors of RGB-D images.

(in hours) to inference on the whole validation set of Scan-

Net200 in the last column.

Class-agnostic evaluation on ScanNet200 [26] and Scan-

Net++ [33] We further examine the quality of mask propos-

als generated by Open3DIS on the ScanNet200 and Scan-

Net++ datasets. In ScanNet200, employing the 3D back-

bone ISBNet, Open3DIS (2D + 3D) demonstrates supe-

rior performance over existing methods in producing high-

quality 3D proposals, as depicted in Tab. 3. In ScanNet++,

unlike previous methods, we utilize only 100 subsampled

2D RGB-D frames per 3D scene (for computational effi-

ciency). The results using solely 2D data exhibit promising

outcomes, as illustrated in Tab. 4.



Method AP AP50 AP25 AR AR50 AR25

Superpoint 5.0 12.7 38.9

DBSCAN [4] 1.6 5.5 32.1

OVIR-3D [19] (Detic) 14.4 27.5 38.8

Mask Clustering [31] (CropFormer) 17.4 33.3 46.7

ISBNet [20] (3D) 40.2 50.0 54.6 66.8 80.4 87.4

Ours (Grounded SAM) 29.7 45.2 56.8 49.0 70.0 83.2

Ours (3D + Grounded SAM) 34.6 43.1 48.5 66.2 81.6 91.4

Ours (SAM) 31.5 45.3 51.1 61.2 87.1 97.5

Ours (3D + SAM) 41.5 51.6 56.3 74.8 90.9 97.8

Table 3. Class-agnostic evaluation on ScanNet200 [26] (updated on 2024, Mar. 19th).

Method AP AP50 AP25 AR AR50 AR25 NOTE

ISBNet [20] (3D) 6.2 10.1 16.2 10.9 16.9 25.2 pretrained Scannet200

SAM3D [32] 7.2 14.2 29.4

SAM-guided Graph Cut [8] 12.9 25.3 43.6

Segment3D [10] 12.0 22.7 37.8

SAI3D [34] (SAM) 17.1 31.1 49.5

Ours (SAM) 18.5 33.5 44.3 35.6 63.7 82.7 100 frames per scene

Ours (SAM) 20.7 38.6 47.1 40.8 75.7 91.8 all frames per scene

Table 4. Class-agnostic evaluation on ScanNet++ [33] (updated on 2024, Mar. 19th).

To assess the quality of class-agnostic masks in the 2D

context, we utilize all masks generated by the 2D-G-3DIP

module without any postprocessing, which typically yields

high recall albeit at the cost of precision. In the case of

3D masks, we select the top 100 masks from ISBNet based

on their confidence scores. Subsequently, to evaluate the

Open-Vocab capability, the class-agnostic masks undergo

postprocessing by selecting the top k (where k ranges ap-

proximately between 300 and 600) masks with the high-

est CLIP scores. Final confidence score set to 1.0 (Open-

Mask3D).

3. Qualitative Results

3.1. Constructing 3D proposals from a single image

In order to acquire high-quality 3D augmented proposals, it

is essential to guarantee the effective elevation of 2D masks

from a single image to a 3D scene. The extensive overlap

of 2D masks often covering multiple objects and the sensi-

tivity of pairing points with pixels due to imperfect camera

calibration are the main factors contributing to the poor per-

formance of prior point-based approaches that rely solely on

geometric Intersection over Union (IoU). In Fig. 2, SAM3D

[32] masks are dispersed over a wide area, while OVIR-3D

[19] masks are noisy and fragmented into parts. Open3DIS,

however, addresses these issues by considering the super-

points and merging them using averaged 3D deep features.

Our method achieves consistency in 3D and 2D, yielding

significantly cleaner 3D point cloud regions of correspond-

ing masks on a single 2D image.

3.2. Reason for Using Superpoints in 2D­G­3DIP

We have opted to utilize 3D Superpoints as the represen-

tation for our innovative 2D-G-3DIP module. The choice

of 3D Superpoints is motivated by their remarkable ability

to precisely encapsulate the shape and boundary of objects

within a 3D scene. Essentially, when we examine an object

within the 3D environment, we find that a subset of 3D Su-

perpoints can accurately and completely cover that object’s

shape, as visually demonstrated in Fig. 3.

Despite the potential imperfections introduced by Depth

sensors, previous methods [19, 32] have typically relied

on Point Cloud - Image Projection techniques to generate

Point-wise 3D instance masks. However, this approach of-

ten yields a sparse set of 3D proposals, and some points may

be obscured, resulting in incomplete masks see in Fig. 5.

In contrast, our Open3DIS takes a distinct approach. We

assign weights to groups of points, specifically 3D Super-

points, and harness the power of 3D deep features and ge-

ometric Intersection over Union (IoU) calculations. This

unique combination allows us to produce Superpoint-wise

3D instance masks that are significantly more detailed and

precise than what previous methods could achieve. These

masks offer a finer-grained representation of object in-



stances in 3D scenes, even in the presence of occlusions

and imperfections.

3.3. More Qualitative Results on ScanNet200,
Replica, and S3DIS

ScanNet200. We present visualizations of Open3DIS ap-

plied to the extensive Scannet200 dataset. In Fig. 4, we

display scenes that have been processed by Open3DIS

alongside their corresponding Instance Ground Truth (In-

stance GT). Despite the considerable size of the Scan-

net200 dataset, it is important to note that the ground truth

annotations may overlook certain relatively small objects

within the scenes. These omitted objects are represented

by black points, indicating instances that have not been la-

beled. Open3DIS utilizes both 2D and 3D segmenters to

generate comprehensive 3D instance masks, ensuring that

even significantly small objects are covered. Although we

continue to use the Scannet200 dataset for evaluation pur-

poses, primarily due to its inclusion of a wide range of ob-

ject classes, we anticipate that Open3DIS will demonstrate

notably superior performance when applied to finer-grained

3D instance segmentation datasets.

In comparison to other methods, as depicted in Fig. 5

with a closer look, Open3DIS excels in producing finer 3D

masks that effectively cover objects with complex and am-

biguous geometric structures. On the other hand, OVIR-

3D relies on 2D segmenters and directly extends 2D masks

to 3D scenes through point-based Intersection over Union

(IoU) matching. This approach results in suboptimal mask

quality, despite its capability to discover rare object classes.

In contrast, OpenMask3D employs a 3D instance segmenter

and evaluates each 3D instance using the CLIP model.

While this approach may offer benefits in certain scenarios,

it compromises the generality of Open-Vocabulary 3D In-

stance Segmentation (Open-Vocabulary 3DIS). Particularly,

OpenMask3D may struggle to identify rare object classes

when expanding the number of classes during training.

Tab. 3 in the main paper provides an illustration of these

differences. OpenMask3D, when trained on Scannet20,

achieves an Average Precision (AP) score of 12.6, whereas

Open3DIS surpasses the state-of-the-art method with an im-

pressive AP score of 19.0. This substantial performance

gap underscores Open3DIS’s superiority in handling di-

verse and challenging 3D instance segmentation tasks.

Replica. The qualitative results of our approach on the

Replica dataset are visualized in Fig. 6a.

S3DIS. The qualitative results of our approach on the

S3DIS dataset are visualized in Fig. 6b.

3.4. Open­Vocabulary Scene Exploration

We showcase the remarkable Open-Vocabulary scene ex-

ploration capabilities of Open3DIS on the ARKitScenes [1]

(Fig. 7a) and ScanNet200 [26] (Fig. 7b) datasets, which are

notable for containing a vast array of scenes featuring di-

verse and rare objects. Specifically, we demonstrate the

system’s ability to query instance objects based on vari-

ous attributes such as material, color, affordances, and us-

age. We intentionally exclude the Class-agnostic 3D Seg-

menter component, thereby pushing our method toward a

near Zero-Shot Instance Segmentation approach. Remark-

ably, in challenging scenarios, such as identifying objects

like a Post-it note, a picture of a horse, or a bottle of olive

oil, Open3DIS outperforms other methods [19, 21, 29, 32]

significantly. Some of these methods struggle to detect

these objects, let alone locate them accurately. Please see

the supplementary video for a live demo.
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Figure 1. (Top) The 2D-G-3DIP module utilizes 2D per-frame instance masks to generate per-frame 3D proposals by leveraging 3D

superpoints. (Bottom) Our proposed hierarchical merging. These proposals are considered point cloud regions and undergo a hierarchical

merging process across multiple views, resulting in the final Augmented 3D proposals (Best viewed in color).
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Figure 2. Qualitative results of our method compared to others in Constructing 3D proposals from 2D masks of an image. Each row shows

one example, including the input 2D reference image, other 2D lifting methods, and our Open3DIS (only 2D) (Best viewed in color).
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Figure 3. Two examples (separated by the dashed line) illustrating the reason for using the 2D-G-3DIP module when creating point cloud

regions, with a focus on accurately covering object instances indicated by the Red circles (Best viewed in color).
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Figure 4. Qualitative results of our method on the ScanNet200 dataset. Each row shows one example, including the input RGB point cloud,

instance ground truth, and our predictions (Best viewed in color).
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Figure 5. Qualitative results of our method compared to others on ScanNet200 dataset. Each column shows one example in Orange ellipses

demonstrating that Open3DIS performs better than others (Best viewed in color).
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(a) Qualitative results on Replica

Input Instance GT Our predictions
(b) Qualitative results on S3DIS

Figure 6. Qualitative results of our method on the Replica (Top) and S3DIS (Bottom) datasets. Each row shows one example, including

the input RGB point cloud, instance ground truth, and our predictions (Best viewed in color).
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Figure 7. Open-Vocabulary exploration on ARKitScenes [1] (Left) and Scannet200 [26] (Right) with Open3DIS (2D only). The middle

column presents the text queries, the original point cloud is displayed on the left column, and colored regions represent 3D instance

proposals on the right column. (Best viewed in color, zoom-in is advised).
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