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Figure 1. Left: While leading open-vocabulary 3D instance segmentation methods like OpenMask3D [64] and OVIR-3D [47] often
struggle with small or ambiguous instances, particularly those from uncommon classes, Open3DIS excels in segmenting such cases. It
outperforms existing methods by about ∼1.5x in average precision on ScanNet200 [58]. Right: Open3DIS aggregates proposals from
both point cloud-based instance segmenters and 2D image-based networks. Our method incorporates novel components (red and yellow
boxes) that perform aggregation and mapping of 2D masks to the point cloud across multiple frames, as well as 3D-aware feature extraction
for effectively comparing object proposals to text queries.

Abstract

We introduce Open3DIS, a novel solution designed to
tackle the problem of Open-Vocabulary Instance Segmen-
tation within 3D scenes. Objects within 3D environments
exhibit diverse shapes, scales, and colors, making precise
instance-level identification a challenging task. Recent ad-
vancements in Open-Vocabulary scene understanding have
made significant strides in this area by employing class-
agnostic 3D instance proposal networks for object local-
ization and learning queryable features for each 3D mask.
While these methods produce high-quality instance propos-
als, they struggle with identifying small-scale and geomet-
rically ambiguous objects. The key idea of our method is
a new module that aggregates 2D instance masks across
frames and maps them to geometrically coherent point
cloud regions as high-quality object proposals addressing

the above limitations. These are then combined with 3D
class-agnostic instance proposals to include a wide range
of objects in the real world. To validate our approach, we
conducted experiments on three prominent datasets, includ-
ing ScanNet200, S3DIS, and Replica, demonstrating signif-
icant performance gains in segmenting objects with diverse
categories over the state-of-the-art approaches.

1. Introduction
This paper addresses the challenging problem of open-
vocabulary 3D point cloud instance segmentation (OV-
3DIS). Given a 3D scene represented by a point cloud, we
seek to obtain a set of binary instance masks of any classes
of interest, which may not exist during the training phase.
This problem arises to overcome the inherent constraints of
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the conventional fully supervised 3D instance segmentation
(3DIS) approaches [21, 22, 50, 60, 63, 66, 81, 84], which
are bound by a closed-set framework – restricting recogni-
tion to a predefined set of object classes that are determined
by the training datasets. This task has a wide range of ap-
plications in robotics and VR systems. This capability can
empower robots or agents to identify and localize objects
of any kind in a 3D environment using textual descriptions
that detail names, appearances, functionalities, and more.

There are a few studies addressing the OV-3DIS so far
[10, 11, 47, 64]. Most recently, [64] proposes the use of a
pre-trained 3DIS model instance proposals network to cap-
ture the geometrical structure of 3D point cloud scenes and
generate high-quality instance masks. However, this ap-
proach faces challenges in recognizing rare objects due to
their incomplete appearance in the 3D point cloud scene and
the limited detection capabilities of pre-trained 3D mod-
els for such infrequent classes. Another approach involves
leveraging 2D off-the-shelf open-vocabulary understanding
models [47, 78] to easily capture novel classes. Neverthe-
less, translating these 2D proposals from images to 3D point
cloud scenes is a challenging task. This is because of the
fact that 2D proposals capture only the visible portions of
3D objects and may also include irrelevant regions, such as
the background. These two approaches are summarized in
Fig. 1.

In this work, we introduce Open3DIS, a method for OV-
3DIS that extends the understanding capability beyond pre-
defined concept sets. Given an RGB-D sequence of im-
ages and the corresponding 3D reconstructed point cloud
scene, Open3DIS addresses the limitations of existing ap-
proaches. It complements two sources of 3D instance pro-
posals by employing a 3D instance network and a 2D-guide-
3D Instance Proposal Module to achieve sufficient 3D ob-
ject binary instance masks. The module (our key contribu-
tion) extracts geometrically coherent regions from the point
cloud under the guidance of 2D predicted masks across mul-
tiple frames and aggregates them into higher-quality 3D
proposals. Later, Pointwise Feature Extraction aggregates
CLIP features for each instance in a multi-scale manner
across multiple views, constructing instance-aware point
cloud features for open-vocabulary instance segmentation.

To assess the open-vocabulary capability of Open3DIS,
we conduct experiments on the ScanNet200 [58], S3DIS
[1], and Replica [62] datasets. Open3DIS achieves state-of-
the-art results in OV-3DIS, surpassing prior works by a sig-
nificant margin. Especially, Open3DIS delivers a notewor-
thy performance improvement of ∼1.5 times compared to
the leading method on the large-scale dataset ScanNet200.

In summary, the contributions of our work are as follows:
1. We present the “2D-Guided 3D Proposal Module”

creating precise 3D proposals by clustering cohe-
sive point cloud regions using aggregated 2D instance

masks from multi-view RGB-D images.
2. We introduce a novel pointwise feature extraction

method for open-vocabulary 3D object proposals.
3. Open3DIS achieves state-of-the-art results on Scan-

Net200, S3DIS, and Replica datasets, exhibiting com-
parable performance to fully supervised methods.

2. Related Work

Open-Vocabulary 2D scene understanding methods aim
to recognize both base and novel classes in testing where
the base classes are seen during training while the novel
classes are not. Based on the types of recognition tasks, we
can categorize them into open-vocabulary object detection
(OVOD) [32, 46, 52, 67, 79, 83, 87], open-vocabulary se-
mantic segmentation (OVSS) [9, 40, 42, 70, 72, 90], and
open-vocabulary instance segmentation (OVIS) [20, 29, 65,
69, 85, 86]. A typical approach for handling the novel
classes is to leverage a pre-trained visual-text embedding
model, such as CLIP [54] or ALIGN [30] as a joint text-
image embedding where base and novel classes co-exist,
in order to transfer the models’ capabilities on base classes
to novel classes. However, these methods cannot trivially
extend to 3D point clouds because 3D point clouds are un-
ordered and imbalanced in density, and the variance in ap-
pearance and shape is much larger than that of 2D images.

Fully-Supervised 3D Instance Segmentation (F-3DIS)
aims to segment 3D point cloud into instances of train-
ing classes. Methods of F-3DIS can be categorized into
three main groups: box-based [25, 76, 81], cluster-based
[5, 12, 31, 66, 68], and dynamic convolution-based [21, 22,
45, 50, 60, 63, 71] techniques. Box-based methods detect
and segment the foreground region inside each 3D proposal
box to get instance masks. Cluster-based methods employ
the predicted object centroid to group points to clusters or
construct a tree or graph structure and subsequently dis-
sect these into subtrees or subgraphs [28, 43]. For the third
group, Mask3D [60] and ISBNet [50], proposed using dy-
namic convolution whose kernels, representative of differ-
ent object instances, are convoluted with pointwise features
to derive instance masks. In this paper, we use ISBNet as
a 3D network, yet with necessary adaptations to output 3D
class-agnostic proposals.

Open-Vocabulary 3D semantic segmentation (OV-3DSS)
and object detection (OV-3DOD) enable the semantic un-
derstanding of 3D scenes in an open-vocabulary manner,
including affordances, materials, activities, and properties
within unseen environments. This capability is highlighted
in recent work [17, 24, 51] for OV-3DSS and [4, 48, 89] for
OV-3DOD. Nevertheless, these methods cannot precisely
locate and distinguish 3D objects with 3D instance masks,
and thus cannot fully describe 3D object shapes.
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Figure 2. Overview of Open3DIS. A pre-trained class-agnostic 3D Instance Segmenter proposes initial 3D objects, while a 2D Instance
Segmenter generates masks for video frames. Our 2D-Guided-3D Instance Proposal Module (Sec. 3.1) combines superpoints and 2D
instance masks to enhance 3D proposals, integrating them with the initial 3D proposals. Finally, the Pointwise Feature Extraction module
(Sec. 3.3) correlates instance-aware point cloud CLIP features with text embeddings to generate the ultimate instance masks.

Open-Vocabulary 3D instance segmentation (OV-3DIS)
concerns segmenting both seen and unseen classes (during
training) of a 3D point cloud into instances. Methods of
OV-3DIS can be split into 3 groups: open-vocabulary se-
mantic segmentation-based, text description and 3D pro-
posal contrastive learning based, and 2D open-vocabulary
powered approaches. The first group includes OpenScene
[51] and Clip3D [23] utilize clustering techniques such as
DBScan on OV-3DSS results to generate 3D instance pro-
posals. However, their quality relies on clustering accuracy
and can lead to unreliable results for unseen classes. On the
other hand, the second group comprising PLA [11], Re-
gionPLC [77], and Lowis3D [10] focuses on training the 3D
instance proposal network along with a contrastive open-
vocabulary between the predicted proposals and their corre-
sponding text captions. However, when growing the num-
ber of classes, these methods struggle to handle and may de-
grade their ability to distinguish diverse object classes. For
the final group, OpenMask3D [64] utilizes a pre-trained
3DIS model to generate class-agnostic 3D proposals, which
are subsequently classified based on their CLIP score from
2D mask projections. Similarly, OpenIns3D [27] employs
a pre-trained 3DIS model and addresses the issue through
its Mask-Snap-Lookup module, utilizing synthetic-scene
images across multiple scales. However, challenges arise
for the pre-trained 3DIS model when identifying small or
uncommon object categories with unique geometric struc-
tures. Conversely, OVIR-3D [47], SAM3D [78], SAM-
Pro3D [74], MaskClustering [75] and SAI3D [82] leverage
pretrained 2D open-vocabulary models to generate 2D in-
stance masks, which are then back-projected onto the as-
sociated 3D point cloud. However, imperfect alignment of
the 2D segmentation masks with objects leads to the inclu-
sion of background points in foreground objects, resulting

in suboptimal quality of 3D proposals. Nonetheless, the ad-
vantage of this group over other groups is in their lever-
age of 2D pretrained model on large-scale datasets such as
CLIP [54] or SAM [35] which can be scaled to hundreds of
classes as in ScanNet200 [58]. Following the final group,
Open3DIS generates high-quality 3D instance proposals by
combining 3D masks from a 3DIS network with proposals
produced by grouping geometrically coherent regions (su-
perpoints) with the guidance of 2D instance masks. This
complements the class-agnostic 3D instance proposals from
3D networks. Our method excels at capturing rare objects
while preserving their 3D geometrical structures, achieving
state-of-the-art performance in the OV-3DIS domain.

3. Method

Our approach processes a 3D point cloud and an RGB-D
sequence, producing a set of 3D binary masks indicating
object instances in the scene. We assume known camera
parameters for each frame. Our architecture is depicted in
Fig. 2. Similarly to prior work [11, 64, 77], we employ a
3DIS network module to extract object proposals directly
from the 3D point cloud. This module leverages 3D con-
volution and attention mechanisms, capturing spatial and
structural relations for robust 3D object instance detection.
Despite its advantages, sparse point clouds, sampling arti-
facts, and noise can lead to missed objects, especially for
small objects e.g., the tissue box in Fig. 1.

Our approach integrates a novel 2D-Guided-3D instance
proposal module , leveraging 2D instance segmentation net-
works trained on large image datasets to better capture
smaller objects in individual images. However, resulting 2D
masks may only capture parts of actual 3D object instances
due to occlusions (Fig. 2 - 2 ). To address this, we propose
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Recall Recallhead Recallcom Recalltail

Only 3D 61.63 81.92 53.68 12.06
Only 2D 68.61 76.66 74.73 34.68

2D and 3D 73.29 87.48 74.16 34.31

Table 1. Recall rate (%) of 2D, 3D, or combined proposals.

a strategy that constructs 3D object instance proposals by
hierarchically aggregating and merging point cloud regions
from back-projected 2D masks of the same object. To en-
hance the robustness and geometric homogeneity, we use
“superpoints” [14] during the merging process. This yields
complete object instances, complementing those extracted
by 3DIS networks. Detailed analysis in Tab. 1 on Scan-
net200 dataset [58] exhibits the significant enhancement in
recall rate, especially for rare classes, when integrating 2D
and 3D proposals.

To enable open-vocabulary classification, we addition-
ally employ a point-wise feature extraction module to con-
struct a dense feature map across the 3D point cloud. In the
following sections, we explain our modules in more detail,
starting with the 2D-Guided-3D Instance Proposal Module
which constitutes our main contribution.

3.1. 2D-Guided-3D Instance Proposal Module

This module takes as input a 3D point cloud P = {pn}Nn=1,
where N is the number of points, and pi ∈ R6 includes
3D coordinates and RGB color. Additionally, it receives
an RGB-D video sequence V = {(It,Dt,Πt)}Tt=1, where
each frame t contains RGB image It, depth map Dt, and
camera matrix Πt (i.e., the product of intrinsic and extrin-
sic matrices used for projecting 3D points onto the image
plane). The output comprises K1 binary instance masks
represented in a K1×N binary matrix M1 (Fig. 2 - 3 ).

Superpoints. In a pre-processing step, we utilize the
method of [14] to group points into geometrically homoge-
neous regions, termed superpoints (Fig. 2 - 1 ). This yields
a set of U superpoints {qu}Uu=1 ∈ {0, 1}U×N , where qu

is a binary mask of points. Superpoints enhance processing
efficiency in the later stages of our pipeline and contribute
to well-formed candidate object instances.

Per-frame superpoint merging. For all input frames,
we utilize a pretrained 2D instance segmenter, employing
Grounding-DINO [46] and SAM [36]. The network out-
puts a set of 2D masks (Fig. 2 - 2 ). For each 2D mask with
index m (unique across all frames), we calculate the IoU
ou,m with each superpoint qu when projecting all points of
qu onto the image plane of mask m using the known camera
matrix, excluding points outside the camera’s field of view,
and determining image pixels containing projected points.
A superpoint is considered to have sufficient overlap with a
2D mask if the IoU is higher than a threshold ou,m > τiou.

However, 2D masks may include background regions or
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Figure 3. 2D-Guided-3D Instance Proposal Module. We gen-
erate initial 3D proposals using Per-frame Superpoint Merging,
followed by hierarchical traversal across the RGB-D sequence to
merge region sets between frames using Agglomerative clustering.

parts of nearby objects, making IoU alone insufficient to de-
termine superpoints belonging to a 3D proposal. To address
this, we leverage the 3D backbone of a 3D proposal net-
work [50, 60] to extract per-point feature F3D ∈ RN×D3D

and measure feature similarity among these superpoints qu

whose features are determined by averaging their point fea-
tures f 3D

u ∈ R1×D3D
. For each 2D instance mask m2D

i ,
we initiate a point cloud region ri with the superpoint hav-
ing the largest IoU with the mask. We extend this region
by merging with neighboring superpoints qu that meet the
overlapping condition (τiou) and also have the highest co-
sine similarity smax

i = maxu′∈ri cos(f 3D
u′ , f 3D

u ) with those
already in the region ri above a threshold (smax

i > τsim)
(we will discuss the effect of all thresholds in our results
section). The growth continues until no other overlapping or
neighboring superpoints are found. Our superpoint merging
procedure, compared to using points alone or other merg-
ing strategies (see Tab. 7), produces more well-formed point
cloud regions corresponding to 2D masks per frame.

3D object proposal formation. To create 3D object pro-
posals, one option is to utilize the point cloud regions
obtained from the merging procedure across individual
frames. However, this results in fragmented proposals, cap-
turing only parts of object instances, as the regions corre-
spond to 2D masks from single views (Fig. 2 - 2 ). To
address this, we merge point cloud regions from different
frames in a bottom-up manner, creating more complete and
coherent 3D object masks. Agglomerative clustering com-
bines region sets from pairs of frames until no compatible
pairs remain. The resulting set includes merged and stan-
dalone regions, which can be matched with other region sets
from subsequent frames. In the following paragraphs, we
discuss three crucial design choices in this process: (a) the
matching score between region pairs, (b) the matching pro-
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cess between sets of regions, and (c) the order of frames or
region sets used in matching and merging.

Matching score. For a pair of point cloud regions (ri, rj),
we define a matching score based on (a) feature similar-
ity and (b) overlap degree. Their feature-based similarity
s′ is measured through cosine similarity between the re-
gions’ feature vectors f 3D

i , or s′i,j = cos(f 3D
i , f 3D

j ), which
are in turn computed as the average of their point fea-
tures. While this measures if the regions belong to the
same object’s shape, it may yield high similarity for du-
plicate instances with the same geometry. To address this,
we also consider the degree of overlap, expressed as the
IoU o′i,j = IoU(ri, rj) between the two regions ri, rj ,
which is expected to be high for overlapping regions of the
same instance. Two regions are considered matching if their
feature-based similarity and IoU score satisfy s′i,j > τsim
and o′i,j > τiou (same thresholds used during per-frame su-
perpoint merging). Our approach, incorporating matching
scores based on point cloud deep features and geometric
structures, results in more coherent and well-defined point
cloud regions compared to other strategies (see Tab. 7).

Agglomerative clustering process. To merge region sets
{ri}Ii=1 and {rj}Jj=1 from different frames into a unified
set {rl}Ll=1, where L ≤ I + J , we employ Agglomerative
clustering [49]. We begin by concatenating them into a sin-
gle “active set” {rl}I+J

l=1 . We compute the each entry ci,j of
the binary cost matrix C of size (I + J)× (I + J) as:

ci,j = 1
(
o′i,j > τiou

)
⊙ 1

(
s′i,j > τsim

)
, (1)

where 1(·) is the indicator function,⊙ is the AND operator.
The agglomerative clustering procedure iteratively merges
regions within the “active set” according to the cost ma-
trix C and continues to update this matrix until no further
merges are possible - indicated by the absence of any posi-
tive elements in C.

Merging order. We explored two merging strategies: a se-
quential order, where region sets are merged between con-
secutive frames, and the resulting set is further merged with
the next frame, and a hierarchical order, which involves
merging region sets between non-consecutive frames in sep-
arate passes. The hierarchical approach forms a binary tree,
with each level merging sets from consecutive pairs of the
previous level (see Fig. 3). Details and performance analy-
sis are presented in the Experiments section.

3.2. 3D Instance Segmentation Network

Network design. This network directly processes 3D point
clouds to generate 3D object instance masks. We em-
ploy established 3D instance segmentation networks like
Mask3D [60] and ISBNet [50] as our backbone. For each
object candidate, the kernel computed from sampled points

2D projection
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View 

Pointwise Feature Extraction
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Average
over views

Multi-scale crops Pointwise
feature
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Figure 4. Pointwise Feature Extraction. Each 3D proposal un-
dergoes projection onto top-λ views and multiscale cropping [64],
to extract CLIP features. The resulting proposal feature is then av-
eraged across views and accumulated into the point cloud feature.

and their neighbors is convolved with point-wise features to
predict the binary mask. In our open-vocabulary scenario,
we exclude semantic labeling heads, focusing solely on the
binary instance mask head. The output consists of K2 bi-
nary masks in a K2×N binary matrix M2 (see Fig. 2 - 4 ).

Combining object instance proposals. We simply append
the proposals of set M2 to M1 to form the final set of K
proposals M with the size of K×N . Note that we ap-
ply NMS here to remove near-duplicate proposals with the
overlapping IoU threshold τdup.

3.3. Pointwise Feature Extraction

In the final stage of our pipeline, we compute a feature vec-
tor for each 3D object proposal from our combined pro-
posal set. This per-proposal feature vector serves various
instance-based tasks, such as comparison with text prompts
in the CLIP space [54]. Unlike prior open-vocabulary
instance segmentation methods [64], which use a top-λ
frame/view approach, we employ a more “3D-aware” pool-
ing strategy. This strategy accumulates feature vectors on
the point cloud, considering the frequency of each point’s
visibility in each view (see Fig. 4). Our rationale is that
points more frequently visible in the top-λ views should con-
tribute more to the proposal’s feature vector.

Let fCLIP
λ,k ∈ RDCLIP

be the 2D CLIP image feature of
k-th instance in λ-th view, νλ ∈ {0, 1}N be the visibility
map of view λ, and m3D

k ∈ {0, 1}N be the k-th proposal
binary mask in M. We obtain the pointwise CLIP feature
FCLIP ∈ RN×DCLIP

as:

FCLIP = NV

(∑
k

(∑
λ

(νλ ∗ fCLIP
λ,k ) ∗m3D

k

))
, (2)

where ∗ is the element-wise multiplication (broadcasting if
necessary) and NV(x) is the L2 normalized vector of x.

The final score between a text query ρ and a 3D mask
m3D

k is the average cosine similarity between its CLIP text
embedding eρ and all points within the mask, particularly:

sCLIP
k,ρ =

1

|m3D
k |
∑
n

cos(FCLIP ∗m3D
k , eρ), (3)
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where |m3D
k | is the number of points in the k-th mask.

4. Experiments
4.1. Experimental Setup

Datasets. We mainly conduct our experiments on the chal-
lenging dataset ScanNet200 [58], comprising 1,201 train-
ing and 312 validation scenes with 198 object categories.
This dataset is well-suited for evaluating real-world open-
vocabulary scenarios with a long-tail distribution. Addition-
ally, we conduct experiments on Replica [62] (48 classes)
and S3DIS [2] (13 classes) for comparison with prior meth-
ods [10, 11]. Replica has 8 evaluation scenes, while S3DIS
includes 271 scenes across 6 areas, with Area 5 used for
evaluation. We follow the categorization approach from
[11] for S3DIS. Notably, we omit experiments on Scan-
NetV2 [7] due to its relative ease compared to ScanNet200
and identical input point clouds.

Evaluation metrics. We evaluate using standard AP met-
rics at IoU thresholds of 50% and 25%. Additionally, we
calculate mAP across IoU thresholds from 50% to 95% in
5% increments. For ScanNet200, we report category group-
specific APhead, APcom, and APtail.

Implementation Details. To process ScanNet200 and
S3DIS scans efficiently, we downsampled the RGB-D
frames by a factor of 10. Our approach utilizes the
Grounded-SAM framework1. We employ the dataset class
names as text prompts for generating 2D instance masks,
followed by NMS with τdup = 0.5 to handle overlap-
ping instances. Our implementation of generating super-
points is from [39, 55]. In Pointwise Feature Extraction,
each proposal is projected into all viewpoints, and we se-
lect the top λ=5 views with the largest number of projected
points. For CLIP, we use the ViT-L/14 [54]. We follow
OpenMask3D[64] by setting the confidence score at 1.0 for
every 3D proposal.

4.2. Comparison to prior work

Setting 1: ScanNet200. The quantitative evaluation of
the ScanNet200 dataset is summarized in Tab. 2. Follow-
ing [64], we utilize the class-agnostic 3D proposal network
trained on the ScanNet200 training set, then test the OV-
3DIS on the validation set. Employing our 2D-Guided-3D
Instance Proposal Module, Open3DIS achieves 18.2 and
19.2 in AP and APtail. We outperform OVIR-3D [47] and
OpenMask3D [64] by margins of +5.2 and +2.8 in AP,
and surpass all other methods, even the fully-supervised ap-
proaches in the APtail metric. This emphasizes the effec-
tiveness of our 2D-Guided-3D Instance Proposal Module,

1https : / / github . com / IDEA - Research / Grounded -
Segment-Anything

which is effective in crafting precise 3D instance masks
independently of any 3D models. Combining with class-
agnostic 3D proposals from ISBNet boosts our performance
to 23.7, 29.4, and 32.8 in AP, AP50, and AP25 — reflect-
ing a 1.5x enhancement in AP compared to prior methods.
Impressively, our method competes closely with fully su-
pervised techniques, attaining approximately 96% and 88%
of the AP scores of ISBNet and Mask3D, and excelling in
the APcom and APtail. This performance underscores the ad-
vantages of merging 2D and 3D proposals and demonstrates
our model’s adeptness at segmenting rare objects.

To assess the generalizability of our approach, we con-
ducted an additional experiment where the class-agnostic
3D proposal network is substituted with the one trained
solely on the ScanNet20 dataset. We then categorized the
ScanNet200 instance classes into two groups: the base
group, consisting of 51 classes with semantics similar to
ScanNet20 categories, and the novel group of the remaining
classes. We report the APnovel, APbase, and AP in Tab. 3. Our
proposed Open3DIS achieves superior performance com-
pared to PLA [11], OpenMask3D [64], with large margins
in both novel and base classes. Notably, PLA [11], trained
with contrastive learning techniques, falls in a setting with
hundreds of novel categories.

Setting 2: Replica. We further evaluate the zero-shot ca-
pability of our method on the Replica dataset, with results
detailed in Tab. 4. Considering that several Replica cate-
gories share semantic similarities with ScanNet200 classes,
to maintain a truly zero-shot scenario, we omitted the class-
agnostic 3D proposal network for this dataset (using pro-
posals from 2D only). Under this constraint, our approach
still outperforms OpenMask3D [64] and OVIR-3D [47] by
margins of +5.0 and +7.0 in AP, respectively.

Setting 3: S3DIS. In line with the setting of PLA [11], we
trained a fully-supervised 3DIS model on the base classes
of the S3DIS dataset, followed by testing the model on both
base and novel classes. The results are shown in Tab. 5,
where we report the performance in terms of APB

50 and
APN

50, representing the AP50 for the base and novel cate-
gories, respectively. Open3DIS significantly outperforms
existing methods in APN

50, achieving more than double their
scores. This remarkable performance underscores the ef-
ficacy of our approach in dealing with unseen categories,
with the support of the 2D foundation model.

Our qualitative results with arbitrary text queries. We
visualize the qualitative results of text-driven 3D instance
segmentation in Fig. 5. Our model successfully segments
instances based on different kinds of input text prompts, in-
volving object categories that are not present in the labels,
object’s functionality, object’s branch, and other properties.

6
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Method Setting 3D Proposal AP AP50 AP25 APhead APcom APtail

ISBNet [50] 24.5 32.7 37.6 38.6 20.5 12.5
Mask3D [60]

Fully-sup
26.9 36.2 41.4 39.8 21.7 17.9

OpenScene [51] + DBScan [13]† None 2.8 7.8 18.6 2.7 3.1 2.6
OpenScene [51] + Mask3D [60] Mask3D [60] 11.7 15.2 17.8 13.4 11.6 9.9
SAM3D† [78] None 6.1 14.2 21.3 7.0 6.2 4.6
OVIR-3D† [47] None 13.0 24.9 32.3 14.4 12.7 11.7
OpenIns3D [27] Mask3D [60] 8.8 10.3 14.4 16.0 6.5 4.2
OpenMask3D [64]

Open-vocab

Mask3D [60] 15.4 19.9 23.1 17.1 14.1 14.9

Ours (only 2D) None 18.2 26.1 31.4 18.9 16.5 19.2
Ours (only 3D) ISBNet [50] 18.6 23.1 27.3 24.7 16.9 13.3
Ours (2D and 3D)

Open-vocab
ISBNet [50] 23.7 29.4 32.8 27.8 21.2 21.8

Table 2. OV-3DIS results on ScanNet200. Methods with † are adapted and evaluated on ScanNet200. Our proposed method achieves the
highest AP, outperforming previous methods in all metrics. The best results are in bold while the second best results are underscored.

"Make coffee""Wipe dishes"

"White pillow"

"Blue pillow

"Nightstand"

"Cool down"

"Nike"

"Muscle gain"

Figure 5. Qualitative results of our method on open-vocabulary instance segmentation. We query instance masks using arbitrary text
prompts involving object categories that are not present in the ScanNet200 labels. For each scene, we showcase the instance that has
the highest similarity score to the query’s embedding. These visualizations underscore the model’s open-vocabulary capability, as it
successfully identifies and segments objects that were never encountered during the training phase of the 3D proposal network.

Method Pretrain APnovel APbase AP

OpenMask3D 15.0 16.2 15.4
Ours ScanNet200

22.6 26.7 23.7

PLA (Base 15) 0.3 10.8 3.2
PLA (Base 20) 0.3 15.8 4.5
OpenScene + Mask3D 7.6 11.1 8.5
OpenMask3D 11.9 14.3 12.6
Ours

ScanNet20

16.5 25.8 19.0

Table 3. OV-3DIS results on ScanNet200 dataset, using the class-
agnostic 3D proposal network trained on ScanNet20.

Method 3D Proposal AP AP50 AP25

OpenScene + Mask3D Mask3D 10.9 15.6 17.3
OpenMask3D Mask3D 13.1 18.4 24.2
OVIR-3D † None 11.1 20.5 27.5

Ours (only 2D) None 18.1 26.7 30.5
Ours (only 3D) ISBNet 14.9 18.8 23.6
Ours (2D and 3D) ISBNet 18.5 24.5 28.2

Table 4. OV-3DIS results on Replica dataset.†We adopt the source
code of [47] to this dataset.

Method B8/N4 B6/N6
APB

50 APN
50 APB

50 APN
50

LSeg-3D [11] 58.3 0.3 41.1 0.5
PLA [11] 59.0 8.6 46.9 9.8
Lowis3D [10] 58.7 13.8 51.8 15.8

Ours 60.8 26.3 50.0 29.0

Table 5. OV-3DIS results on S3DIS in terms of APB
50 and APN

50.

Setting AP APhead APcom APtail

A1: OpenScene (distill) 3.3 5.5 2.4 1.7
A2: OpenScene (fusion) 17.5 21.5 17.1 13.3
A3: OpenScene (ensemble) 5.6 6.4 4.8 5.7
B: Mask-wise Feature 22.2 25.9 19.3 21.4
C: Point-wise Feature 23.7 27.8 21.2 21.8

Table 6. Comparing between extracting per-mask and per-point
features for classification using Open3DIS instance proposal set.
Use Superpoint Filtering Cond. AP APhead APcom APtail

✓ Deep. Feature 18.2 18.9 16.5 19.2
✓ None 15.9 16.5 14.3 17.0
✓ Euclid Dist. 16.0 16.4 14.1 17.6

None 12.0 12.6 11.2 12.2

Table 7. Ablation on different configurations of the 2D-G-3DIP.
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Merging Strat. Merging Ord. AP APhead APcom APtail

Hungarian Sequential 13.2 13.9 11.3 14.7
Hungarian Hierarchical 16.1 16.1 13.3 19.4
Agglomerative Sequential 16.9 17.8 16.1 18.0
Agglomerative Hierarchical 18.2 18.9 16.5 19.2

Table 8. Ablation on different merging configurations.

3D Seg. AP APhead APcom APtail

Mask3D [60] 23.7 26.4 22.5 21.9
ISBNet [50] 23.7 27.8 21.2 21.8

Table 9. Ablation on different 3D segmenters.

4.3. Ablation study

To validate design choices of our method, series of ablation
studies are conducted on validation set of ScanNet200.

Study on different kinds of features for open-vocabulary
classification is presented in Tab. 6. In the first three rows
(setting A1-A3), we employ the pointwise feature map ex-
tracted by OpenScene [51] to perform classification on our
3D proposals. Of these, the fusion approach, which directly
projects CLIP features from 2D images onto the 3D point
cloud, yields the highest results, 17.5 in AP. In setting B,
we adopt a strategy akin to [64], extracting features for each
mask by projecting the 3D proposals onto the top-λ views,
which attains an AP of 22.2. Surpassing these, our Point-
wise Feature Extraction (setting C) achieves the best AP
score of 23.7, substantiating our design choice.

Study on the 2D-Guided-3D Instance Proposal Module
is in Tab. 7. Our proposed approach (row 1), utilizing su-
perpoints to merge 3D points into regions and filter outliers
based on cosine similarity in feature space, achieves an AP
of 18.2. Disabling this filtering notably reduces AP by 2.3.
Comparatively, a more basic method (row 3) relying on Eu-
clidean distance to eliminate outlier superpoints yields an
AP of 16.0, showing the lesser effectiveness of Euclidean
distance for noise filtering. Our baseline (last row), group-
ing 3D points solely based on 2D masks, significantly de-
creases AP to 12.0, underscoring the necessity of superpoint
merging for effective 3D proposal creation.

We study different merging configurations, including
merging strategy and merging order in Tab. 15. Specif-
ically, we first establish a partial matching between two
sets of regions, then matched pairs are merged into new re-
fined regions, and unmatched ones remain the same. Using
Hungarian matching yields inferior results relative to pro-
posed Agglomerative Clustering, with a drop of∼2.0 in AP.
Adopting the sequential merging order leads to a slight de-
crease by ∼1.0 in AP in performance. The best results are
achieved when agglomerative clustering is paired with the
hierarchical merging order.

2D Seg. AP APhead APcom APtail

SEEM [90] 21.5 26.5 19.6 18.0
ODISE [73] 21.6 26.0 19.5 19.1
Detic [88] 22.2 26.8 20.0 19.2
Grounded-SAM 23.7 27.8 21.2 21.8

Table 10. Ablation on different 2D segmenters.

τiou 0.3 0.5 0.7 0.9 0.95

AP 17.7 17.8 18.0 18.2 16.9
AP50 25.4 25.8 25.9 26.1 24.1

Table 11. Ablation on τiou.

τsim 0.5 0.7 0.8 0.9 0.95

AP 14.2 14.6 17.2 18.2 16.2
AP50 21.0 21.8 25.1 26.1 23.8

Table 12. Ablation on τsim.

View Selection Top 1 Top 5 Top 10 Top 20 All

AP 21.2 23.7 22.6 22.5 22.5
AP50 27.3 29.4 28.7 29.0 29.1

Table 13. Ablation on top-λ view selection.

Ablation Study on Segmenters. Our comparative anal-
ysis of various class-agnostic 3D segmenters and open-
vocabulary 2D segmenters is presented in Tab. 9 and 10.
The findings reveal that utilizing either ISBNet [50] or
Mask3D [60] leads to similar levels of performance, achiev-
ing an AP of 23.7. Incorporating 2D instance masks from
SEEM [90], Detic [88] or ODISE [73] leads to a slight de-
crease in AP by ∼1.4, which we attribute to the less refined
outputs produced by these models.

Ablation study on different values of visibility thresh-
old and similarity threshold. We report the performance
of our version using only proposals from the 2D-G-3DIP
with different values of the visibility threshold and similar-
ity threshold in Tab. 11 and 12.

Study on different values of viewpoints is illustrated in
Tab. 13. Relying only on the viewpoint with the highest
number of projected points reduces the AP score to 21.2.
Conversely, raising the number of views to 10 or more also
yields worse results, likely due to the presence of inferior,
occluded 2D masks. λ=5 reports the best performance.

5. Discussion

We presented a method for open-vocabulary instance seg-
mentation in 3D scenes, which aggregates proposals from
both point cloud-based instance segmenters and 2D image-
based networks in a geometrically coherent manner.

Limitations. Our Class-agnostic 3D Proposal and 2D-
Guided-3D Instance Proposal Module currently operate in-
dependently, with their outputs being combined to obtain
the final 3D proposal set. A better-integrating strategy,
where these modules enhance each other’s performance in a
synergistic fashion, would be an interesting future direction.
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Krähenbühl, and Ishan Misra. Detecting twenty-thousand
classes using image-level supervision. In ECCV, 2022. 8, 13

[89] Chenming Zhu, Wenwei Zhang, Tai Wang, Xihui Liu, and
Kai Chen. Object2scene: Putting objects in context for open-
vocabulary 3d detection. arXiv preprint arXiv:2309.09456,
2023. 2

[90] Xueyan Zou, Jianwei Yang, Hao Zhang, Feng Li, Linjie Li,
Jianfeng Gao, and Yong Jae Lee. Segment everything every-
where all at once. arXiv preprint arXiv:2304.06718, 2023.
2, 8, 13

12



6. Implementation Details
6.1. Class-agnostic 3D Segmenter

We adopt the architecture from ISBNet [50] to serve as our
class-agnostic 3D proposal network due to its publicly re-
leased implementation. This network processes N points in
a colored point cloud P ∈ RN×6 and outputs a collection of
K binary 3D instance mask M ∈ {0, 1}K×N . At its core is
a 3D UNet backbone a 3D UNet backbone [16], utilizing 3D
sparse convolutions [15], which processes the input to pro-
duce a feature map F3D of the point cloud. Subsequently,
an instance-wise encoder, based on a sampling strategy, re-
fines these features to produce instance-specific kernels and
bounding box parameters. The final stage involves a box-
aware dynamic convolution, which employs these instance
kernels and mask features, augmented by the correspond-
ing box predictions, to compute the binary mask for each
instance.

During inference, we utilize the Intersection over Union
(IoU) prediction score to filter out lower-quality masks,
with a threshold of 0.2. This score is neutral regarding
object classes—during training, the IoU prediction head is
trained on the IoU values calculated between the predicted
masks and their ground truth counterparts, which are de-
termined by the Bipartite Matching algorithm. Next, we
employ superpoints [39, 55] to refine the alignment of our
proposals with the actual point cloud structure. This step
ensures that our segmentation is consistent with the spa-
tial organization of the point cloud. Lastly, we discard any
small proposals that have fewer than 50 points.

6.2. Open-Vocabulary 2D Segmenter

In this study, we employ four 2D open-vocabulary instance
segmenters: Grounded-SAM2, DETIC [88], SEEM [90],
and ODISE [73]. Here is a breakdown of how each of these
segmenters is utilized:
(a) For Grounded-SAM, we utilize the Swin-B Grounding
DINO decoder [42], which has been pretrained on various
datasets including COCO [44], O365 [61], GoldG [37, 53],
OpenImage [38], ODinW-35 [41], and RefCOCO [33].
This model is employed to generate bounding boxes from
a given text prompt, with box and text thresholds both set
to 0.4. Subsequently, these generated bounding boxes are
passed through the ViT-L Segment Anything Model [34] to
produce instance masks. To process every text query cap-
tion, we divide it into chunks, each containing 10 classes,
accommodating the limitations of the 77-token decoder. Fi-
nally, we apply Non-Maximum-Suppression with an IoU
threshold of 0.5 to obtain the ultimate bounding boxes.
(b) For DETIC, we follow [47] to use the Swin-B model pre-
trained on the ImageNet-21K dataset [8] with 21K classes

2https : / / github . com / IDEA - Research / Grounded -
Segment-Anything

as text queries. We set the confidence threshold at 0.5.
(c) For SEEM, we employ the Focal-T visual decoder,
which is trained on RefCOCO and LVIS [19], with a logit
score threshold of 0.4. Similar to Grounded-SAM, SEEM
follows a query processing and post-processing procedure.
(d) For ODISE, we utilize the pre-trained label COCO ver-
sion. This model is complemented by the Stable Diffusion
[57] pre-trained on a subset of the LAION [59] dataset,
along with Mask2Former [6] serving as the mask genera-
tor. We set the confidence threshold to 0.5.

6.3. S3DIS and Replica Datasets

(a) For the S3DIS dataset, which lacks original mesh data,
we apply the superpoint-graph method from the Superpoint
Transformer [56] to generate superpoints straight from the
3D point cloud data. For scenes having an extra large num-
ber of points (e.g. 1M points), we subsample the point cloud
by a factor of 4 for efficient processing.
(b) For the Replica dataset, we adopt the mesh segmenta-
tion tool3 based on Felzenszwalb and Huttenlocher’s effi-
cient graph-based image segmentation method [14] to cre-
ate superpoints. The ground-truths for semantic and in-
stance segmentation are provided by [64].

6.4. 3D Object Proposal Formation Process

The implementation details of the 3D Object Proposal For-
mation Process using the Hierarchical merging order and
Agglomerative merging strategy are shown in Alg. 1. Hav-
ing the 3D point cloud regions obtained from the merging
procedure across individual frames {r1, r2, . . . , rT }, the
algorithm merges these independently fragmented regions
(see Fig. 6) into well-formed ones recursively, resulting in
high-quality augmented 3D proposals.

6.5. Point cloud - Image Projection

To establish the correspondence between a 3D point cloud
and each frame of the RGB-D sequence V, we employ the
principles of pinhole camera projection. Given a 3D point
cloud P = {pi}Ni=1 ∈ RN×6, and for a specific frame t,
we consider its depth image Dt ∈ RH×W , intrinsic matrix
Kt ∈ R3×3 and extrinsic matrix [R|c]t ∈ R3×4, where
R is a 3D rotation matrix and c is a 3D translation vector.
The composite matrix of rotation and translation converts
coordinate from the global frame (of the point cloud) to the
camera’s frame at time t. We compute the projection matrix
that maps 3D points to 2D image coordinates as follows:

Πt = Kt · [R|c]t (4)

Then the 2D projection of a 3D point pi =

[x
(3d)
i , y

(3d)
i , z

(3d)
i ] ∈ P is given by:

3https : / / github . com / ScanNet / ScanNet / tree /
master/Segmentator
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Algorithm 1 3D Object Proposal Formation
Input: T per-frame merged point cloud regions {rt}Tt=1.
Output: Augmented 3D proposal set r.

1: function HIERARCHICAL TRAVERSE(s: start, e: end)
2: if s = e then
3: return rs ▷ Look up in {rt}Tt=1

4: else
5: m← ⌊(s+ e)/2⌋
6: rleft ← HIERARCHICAL TRAVERSE(s,m)
7: rright ← HIERARCHICAL TRAVERSE(m+1, e)
8: r← (rleft ∪ rright)
9: Cr ← COST MATRIX(r) ▷ following Eq. (1)

in the main paper
10: r← AGGLOMERATIVE CLUSTERING(r,Cr)
11: return r
12: end if
13: end function
14: r← HIERARCHICAL TRAVERSE(1, T )

z
(2d)
i ·

x(2d)
i

y
(2d)
i

1

 = Πt ·


x
(3d)
i

y
(3d)
i

z
(3d)
i

1

 (5)

where z
(2d)
i is the projected depth value and x

(2d)
i , y

(2d)
i is

the 2D pixel coordinate. Next, we discard any points whose
projections fall outside the image boundaries, defined by
x
(2d)
i /∈ [0,W − 1] or y(2d)i /∈ [0, H − 1]. To address occlu-

sion within that viewpoint, we further filter out points where
the difference between their projected depth and the actual
depth recorded at the corresponding pixel in the depth im-
age exceeds a certain depth threshold τdepth:

|z(2d)i −Dt[⌊y(2d)i ⌋, ⌊x(2d)
i ⌋]| > τdepth (6)

7. Additional Analysis

Ablation study on the depth threshold τdepth is reported
in Tab. 14. Overall, τdepth = 0.1 gives the best perfor-
mance.

Ablation study on the subsampling factors of RGB-D
images is shown in Tab. 15. By default, we subsample the
number of images by a factor of 10. Increasing the subsam-
pling factor to 20 or 40 slightly decreases the performance
to 17.1 in AP scores. Reducing the number of images too
much yields worse results. We also report the total runtime
(in hours) to inference on the whole validation set of Scan-
Net200 in the last column.

τdepth AP APhead APcom APtail

0.2 17.4 17.7 15.6 19.3
0.1 18.2 18.9 16.5 19.2

0.05 18.7 17.7 16.4 22.8
0.025 17.7 17.6 17.6 18.6
0.01 16.7 16.3 13.8 21.2

Table 14. Ablation on the depth threshold τdepth.

Use 3D Sub. factor AP APhead APcom APtail Time (h)

✓ 10 (default) 23.7 27.8 21.2 21.8 20 + 2.3
10 (default) 18.2 18.9 16.5 19.2 20 + 2

20 17.9 17.9 16.5 19.6 10 + 1
40 17.4 17.3 16.7 18.5 5 + 0.5
80 16.5 16.7 15.4 17.1

160 13.2 12.4 12.4 15.2
320 9.0 8.6 8.0 10.7

Table 15. Study on the subsampling factors of RGB-D images.

Class-agnostic evaluation on ScanNet200 [58] and Scan-
Net++ [80] We further examine the quality of mask propos-
als generated by Open3DIS on the ScanNet200 and Scan-
Net++ datasets. In ScanNet200, employing the 3D back-
bone ISBNet, Open3DIS (2D + 3D) demonstrates supe-
rior performance over existing methods in producing high-
quality 3D proposals, as depicted in Tab. 16. In ScanNet++,
unlike previous methods, we utilize only 100 subsampled
2D RGB-D frames per 3D scene (for computational effi-
ciency). The results using solely 2D data exhibit promising
outcomes, as illustrated in Tab. 17.

To assess the quality of class-agnostic masks in the 2D
context, we utilize all masks generated by the 2D-G-3DIP
module without any postprocessing, which typically yields
high recall albeit at the cost of precision. In the case of
3D masks, we select the top 100 masks from ISBNet based
on their confidence scores. Subsequently, to evaluate the
Open-Vocab capability, the class-agnostic masks undergo
postprocessing by selecting the top k (where k ranges ap-
proximately between 300 and 600) masks with the high-
est CLIP scores. Final confidence score set to 1.0 (Open-
Mask3D).

8. Qualitative Results
8.1. Constructing 3D proposals from a single image

In order to acquire high-quality 3D augmented proposals, it
is essential to guarantee the effective elevation of 2D masks
from a single image to a 3D scene. The extensive overlap
of 2D masks often covering multiple objects and the sensi-
tivity of pairing points with pixels due to imperfect camera
calibration are the main factors contributing to the poor per-
formance of prior point-based approaches that rely solely on
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Method AP AP50 AP25 AR AR50 AR25

Superpoint 5.0 12.7 38.9
DBSCAN [13] 1.6 5.5 32.1
OVIR-3D [47] (Detic) 14.4 27.5 38.8
Mask Clustering [75] (CropFormer) 17.4 33.3 46.7
ISBNet [50] (3D) 40.2 50.0 54.6 66.8 80.4 87.4
Ours (Grounded SAM) 29.7 45.2 56.8 49.0 70.0 83.2
Ours (3D + Grounded SAM) 34.6 43.1 48.5 66.2 81.6 91.4
Ours (SAM) 31.5 45.3 51.1 61.2 87.1 97.5
Ours (3D + SAM) 41.5 51.6 56.3 74.8 90.9 97.8

Table 16. Class-agnostic evaluation on ScanNet200 [58] (updated on 2024, Mar. 19th).

Method AP AP50 AP25 AR AR50 AR25 NOTE

ISBNet [50] (3D) 6.2 10.1 16.2 10.9 16.9 25.2 pretrained Scannet200
SAM3D [78] 7.2 14.2 29.4
SAM-guided Graph Cut [18] 12.9 25.3 43.6
Segment3D [26] 12.0 22.7 37.8
SAI3D [82] (SAM) 17.1 31.1 49.5
Ours (SAM) 18.5 33.5 44.3 35.6 63.7 82.7 100 frames per scene
Ours (SAM) 20.7 38.6 47.1 40.8 75.7 91.8 all frames per scene

Table 17. Class-agnostic evaluation on ScanNet++ [80] (updated on 2024, Mar. 19th).

geometric Intersection over Union (IoU). In Fig. 7, SAM3D
[78] masks are dispersed over a wide area, while OVIR-3D
[47] masks are noisy and fragmented into parts. Open3DIS,
however, addresses these issues by considering the super-
points and merging them using averaged 3D deep features.
Our method achieves consistency in 3D and 2D, yielding
significantly cleaner 3D point cloud regions of correspond-
ing masks on a single 2D image.

8.2. Reason for Using Superpoints in 2D-G-3DIP

We have opted to utilize 3D Superpoints as the represen-
tation for our innovative 2D-G-3DIP module. The choice
of 3D Superpoints is motivated by their remarkable ability
to precisely encapsulate the shape and boundary of objects
within a 3D scene. Essentially, when we examine an object
within the 3D environment, we find that a subset of 3D Su-
perpoints can accurately and completely cover that object’s
shape, as visually demonstrated in Fig. 8.

Despite the potential imperfections introduced by Depth
sensors, previous methods [47, 78] have typically relied
on Point Cloud - Image Projection techniques to generate
Point-wise 3D instance masks. However, this approach of-
ten yields a sparse set of 3D proposals, and some points may
be obscured, resulting in incomplete masks see in Fig. 10.

In contrast, our Open3DIS takes a distinct approach. We
assign weights to groups of points, specifically 3D Super-
points, and harness the power of 3D deep features and ge-

ometric Intersection over Union (IoU) calculations. This
unique combination allows us to produce Superpoint-wise
3D instance masks that are significantly more detailed and
precise than what previous methods could achieve. These
masks offer a finer-grained representation of object in-
stances in 3D scenes, even in the presence of occlusions
and imperfections.

8.3. More Qualitative Results on ScanNet200,
Replica, and S3DIS

ScanNet200. We present visualizations of Open3DIS ap-
plied to the extensive Scannet200 dataset. In Fig. 9, we
display scenes that have been processed by Open3DIS
alongside their corresponding Instance Ground Truth (In-
stance GT). Despite the considerable size of the Scan-
net200 dataset, it is important to note that the ground truth
annotations may overlook certain relatively small objects
within the scenes. These omitted objects are represented
by black points, indicating instances that have not been la-
beled. Open3DIS utilizes both 2D and 3D segmenters to
generate comprehensive 3D instance masks, ensuring that
even significantly small objects are covered. Although we
continue to use the Scannet200 dataset for evaluation pur-
poses, primarily due to its inclusion of a wide range of ob-
ject classes, we anticipate that Open3DIS will demonstrate
notably superior performance when applied to finer-grained
3D instance segmentation datasets.
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In comparison to other methods, as depicted in Fig. 10
with a closer look, Open3DIS excels in producing finer 3D
masks that effectively cover objects with complex and am-
biguous geometric structures. On the other hand, OVIR-
3D relies on 2D segmenters and directly extends 2D masks
to 3D scenes through point-based Intersection over Union
(IoU) matching. This approach results in suboptimal mask
quality, despite its capability to discover rare object classes.
In contrast, OpenMask3D employs a 3D instance segmenter
and evaluates each 3D instance using the CLIP model.
While this approach may offer benefits in certain scenarios,
it compromises the generality of Open-Vocabulary 3D In-
stance Segmentation (Open-Vocabulary 3DIS). Particularly,
OpenMask3D may struggle to identify rare object classes
when expanding the number of classes during training.

Tab. 3 in the main paper provides an illustration of these
differences. OpenMask3D, when trained on Scannet20,
achieves an Average Precision (AP) score of 12.6, whereas
Open3DIS surpasses the state-of-the-art method with an im-
pressive AP score of 19.0. This substantial performance
gap underscores Open3DIS’s superiority in handling di-
verse and challenging 3D instance segmentation tasks.

Replica. The qualitative results of our approach on the
Replica dataset are visualized in Fig. 11a.

S3DIS. The qualitative results of our approach on the
S3DIS dataset are visualized in Fig. 11b.

8.4. Open-Vocabulary Scene Exploration

We showcase the remarkable Open-Vocabulary scene ex-
ploration capabilities of Open3DIS on the ARKitScenes [3]
(Fig. 12a) and ScanNet200 [58] (Fig. 12b) datasets, which
are notable for containing a vast array of scenes featuring
diverse and rare objects. Specifically, we demonstrate the
system’s ability to query instance objects based on vari-
ous attributes such as material, color, affordances, and us-
age. We intentionally exclude the Class-agnostic 3D Seg-
menter component, thereby pushing our method toward a
near Zero-Shot Instance Segmentation approach. Remark-
ably, in challenging scenarios, such as identifying objects
like a Post-it note, a picture of a horse, or a bottle of olive
oil, Open3DIS outperforms other methods [47, 51, 64, 78]
significantly. Some of these methods struggle to detect
these objects, let alone locate them accurately. Please see
the supplementary video for a live demo.
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Figure 6. (Top) The 2D-G-3DIP module utilizes 2D per-frame instance masks to generate per-frame 3D proposals by leveraging 3D
superpoints. (Bottom) Our proposed hierarchical merging. These proposals are considered point cloud regions and undergo a hierarchical
merging process across multiple views, resulting in the final Augmented 3D proposals (Best viewed in color).
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2D Reference Image SAM3D Open3DISOVIR-3D

500

Figure 7. Qualitative results of our method compared to others in Constructing 3D proposals from 2D masks of an image. Each row shows
one example, including the input 2D reference image, other 2D lifting methods, and our Open3DIS (only 2D) (Best viewed in color).
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Figure 8. Two examples (separated by the dashed line) illustrating the reason for using the 2D-G-3DIP module when creating point cloud
regions, with a focus on accurately covering object instances indicated by the Red circles (Best viewed in color).
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Input Instance GT Our predictions

Figure 9. Qualitative results of our method on the ScanNet200 dataset. Each row shows one example, including the input RGB point cloud,
instance ground truth, and our predictions (Best viewed in color).
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Figure 10. Qualitative results of our method compared to others on ScanNet200 dataset. Each column shows one example in Orange
ellipses demonstrating that Open3DIS performs better than others (Best viewed in color).
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Input Instance GT Our predictions
(a) Qualitative results on Replica

Input Instance GT Our predictions
(b) Qualitative results on S3DIS

Figure 11. Qualitative results of our method on the Replica (Top) and S3DIS (Bottom) datasets. Each row shows one example, including
the input RGB point cloud, instance ground truth, and our predictions (Best viewed in color).
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(b) Scannet200

Figure 12. Open-Vocabulary exploration on ARKitScenes [3] (Left) and Scannet200 [58] (Right) with Open3DIS (2D only). The middle
column presents the text queries, the original point cloud is displayed on the left column, and colored regions represent 3D instance
proposals on the right column. (Best viewed in color, zoom-in is advised).
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